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Abstract

This paper presents a methodology for the identification of a reduced-order model (ROM) for the perturbation

aeroelastic analysis of fixed wings in transonic flight. It is based on a linearized, frequency-domain, boundary-field

integral equation for the solution of the unsteady perturbation potential flow about steady-state reference wing

configurations. The resulting transfer functions between structural Lagrangean variables and generalized aerodynamic

forces are approximated by means of rational expressions, and the aeroelastic ROM is identified by coupling them with

the structural operator. With the aeroelastic operator recast in a reduced-order form, transonic flutter boundaries are

detected through a classical eigenvalue analysis and the time-domain state–space aeroelastic model is also obtained.

Applications of the methodology presented to a widely known aeroelastic test case reveal a remarkable agreement with

the measured speed and frequency of flutter.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A reduced-order model (ROM) for the unsteady aerodynamics of flexible wings in the transonic regime is presented

and coupled with the structural operator yielding a ROM for the complete aeroelastic operator. Because of the highly

time-consuming, time-marching nonlinear approaches typically applied to the aeroelastic analysis of fixed wings in

transonic flows, the availability of an aeroelastic model based on an aerodynamic ROM would be extremely convenient.

This is particularly true in flutter detection, where it allows the identification of the stability boundaries through

classical eigenproblem analysis, without the need of introducing iterative methods such as p–k or V–g. In addition, in

the time domain, the availability of an aerodynamic ROM is the essential condition for recasting the aeroelastic

problem in state–space format. The state–space format is particularly attractive for control purposes and preliminary

design analysis, where accurate but simple mathematical models are desired. Several different techniques have been

developed in the last decade to extract reduced-order models of nonlinear systems. One of the most widely used in

aeroelastic modeling is based on the application of the Volterra theory on the impulse response provided by unsteady

CFD solvers [see, e.g., Silva and Bartels (2004)]. An extensive review of the most recent research on reduced-order

modeling is given in Lucia et al. (2004).
e front matter r 2005 Elsevier Ltd. All rights reserved.
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In the present paper, it is assumed that the unsteady transonic flow can be approximated by the superposition of a

nonlinear mean steady flow with a linear unsteady small perturbation flow. Similar approaches have been examined in the

past by Fung et al. (1978), Williams (1979) and Ehlers and Weatherill (1982). The unsteady perturbation velocity field is

solved in the frequency domain by a linearized boundary-field integral equation for the unknown potential. The

aerodynamic transfer functions between wing structural Lagrangean variables and aerodynamic generalized forces are

derived by the application of Bernoulli’s theorem followed by projection of pressure loads onto the shape functions chosen

for the description of wing elastic deformation. These generalized aerodynamic forces are approximated by finite-pole

rational expressions that, coupled with the structural dynamics operator, allow the identification of flutter stability

boundaries by a classical eigenvalue analysis. In addition, transforming the problem into the time domain, gives the

aeroelastic ROM in a state–space format that involves the structural Lagrangean variables and some additional

aerodynamic states. The additional aerodynamic states arise because of the presence of a finite number of poles in the

rational aerodynamic transfer functions. In turn, these poles are introduced for approximating the effects of the

transcendental terms appearing in the original aerodynamic transfer functions due to the unsteady vorticity convected

along the wake and the finite value of the speed of sound in compressible flows (Gennaretti and Mastroddi, 2004).

A numerical investigation concerning the analysis of the effects of flow compressibility on the aerodynamic transfer

functions, and the detection of flutter boundaries in transonic flow regimes for a widely used test case available in the

literature will be presented.
2. Integral equation for linearized transonic aerodynamics

The isentropic irrotational flow of a compressible inviscid fluid is described by the full-potential model. The

advantage of using the velocity potential function, f, such that ~v ¼ rf, resides in the reduction of the problem

to the evaluation of a single scalar field, with the limitation that entropy variations and vorticity cannot be predicted. It

has been widely demonstrated that these limitations are acceptable for the evaluation of the unsteady aerodynamic

loads if the vibrations of airplane wings at cruising conditions are constrained to small amplitudes and, in addition, the

airfoil thickness is assumed to be small. Indeed, in such a flow the vorticity is confined in a narrow region and the shock

waves are usually weak. For these reasons, the full-potential model is still of primary interest for aeroelastic

applications. By combining the continuity equation with Bernoulli’s theorem for isentropic potential compressible

flows, and taking into account the isentropic density–enthalpy relationship (Iemma and Morino, 1997), the full-

potential equation reads

r2f�
1

c21

q2f
qt2

¼ s, (1)

where c1 is the undisturbed flow speed of sound and s represents the nonlinear terms. The expression for s depends on
the form of the continuity equation used for the derivation of Eq. (1) (Iemma and Morino, 1997). The flow is assumed

to be bounded by the surface S ¼ SB [ SW , where SB and SW are wing and wake surfaces, respectively. Denoting by V

the flow region where the nonlinear terms are not negligible and for unperturbed flow condition at infinite distance from

the wing, the boundary integral formulation, in a wing-fixed frame of reference, yields the following transonic flow

potential solution (Iemma and Morino, 1997):

fð~x; tÞ ¼
Z
S

G
qf
qn̂

� f
qG

qn̂
þ _fG

qŷ
qn̂

" #y
dSð~yÞ

þ

Z
V

G s½ 
y dVð~yÞ. ð2Þ

In this equation,

Gð~x;~yÞ ¼
�1

4p rb

is the space distribution of the unit source solution of Eq. (1), and rb ¼ f½~m
B
� ð~y � ~xÞ
2 þ b2k~y � ~xk2g1=2, with ~m

B
¼

~v
B
=c1 denoting the Mach vector of the wing velocity, ~v

B
, and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

B

q
. In addition, ½ 
y indicates evalua-

tion at the retarded time t � y, where y ¼ ½rb � ~m
B
� ð~y � ~xÞ
=c1 b2 is the time required by a perturbation to travel

from ~y to ~x (acoustic time delay), ŷ ¼ ½rb þ ~m
B
� ð~y � ~xÞ
=c1 b2, whereas ~n denotes the wing outward unit
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normal, and

qð�Þ
qn̂

¼
qð�Þ
qn

� ~m
B
�~n ~m

B
� ~rð�Þ.

Within the present scope, i.e., the identification of a transonic aeroelastic ROM via linearization of the aerodynamic

operator, the use of the following nonconservative form of s is convenient (it depends on integer powers of f and rf):

s ¼ ðc21�c2Þ
r2f
c21

þ
2~v�q~v=qt

c21
þ

~v

2c21
� rv2. (3)

Since the natural application of linearized operators deals with small perturbations around a reference configuration,

the use of the nonconservative form for s does not affect significantly the accuracy of the perturbation solution.

However, this is not true when dealing with the steady reference field, for which the conservation form of the equation

represents a crucial point since it guarantees the satisfaction of the mass conservation law even in the presence of strong

shocks. See, for example the references by Jameson (1975) and, for integral formulations, Morino and Iemma (1993).

Indeed, for the numerical evaluation of the steady reference aerodynamic solution the nonlinear terms, s
0
, are obtained

through the conservative form, with the full-potential model completed by the application of the Bernoulli theorem for

the determination of the local speed of sound (Iemma and Morino, 1997) that reads

c2

c21
¼ 1�

g� 1

c21

qf
qt

þ
v2

2

� �
.

As mentioned above, the basic issue in the reduced-order modeling presented in this paper is the definition of the

frequency-domain linearized version of the boundary-field integral equation, Eq. (2). The unsteady potential is assumed

to be given by the superposition of the steady reference solution, f
0
, with a small perturbation potential field, j, so that

f ¼ f
0
þ j and hence ~v ¼ r f

0
þ j

� 	
¼ ~v

0
þ~n, with~n denoting the perturbation velocity field. Then, substituting into

Eq. (3) and retaining only the terms depending linearly on j, yields the following expression for the small perturbation
component of the field contribution in Eq. (2):

B ¼ A1r
2jþ A2 _jþ ~A3 �~nþ ~A4 �

_~nþ
~A4

2
� rð~v

0
�~nÞ,

where the coefficients have the form

A1 ¼
g� 1

c21
~v

B
�~v

0
þ

v2
0

2

 !
,

A2 ¼
g� 1

c21
r2f

0
,

~A3 ¼
1

c21
ðg� 1Þr2f

0
ð~v

0
þ~v

B
Þ þ

1

2
rv2

0

� 

,

~A4 ¼
2

c21
~v
0
.

The final steps of the derivation are: (i) recasting the nonlinear terms in Eq. (2) as s ¼ s
0
þ B, (ii) elimination of the

constant terms that satisfy the integral equation for f
0
and (iii) transformation into the Laplace domain. These yield the

following linear boundary-field integral equation for the perturbation potential:

~jð~xÞ ¼
Z
S

G
q ~j
qn̂

� ~j
qG

qn̂
þ s ~jG

qŷ
qn̂

 !
e�sy dSð~yÞ

þ

Z
V

G ~B e�sy dVð~yÞ, ð4Þ

where the tilde indicates Laplace transformation.
3. Linearized transonic BEM

In this section, Eq. (4) is discretized so as to get a version of it that is suitable for numerical applications. This is

obtained through the a zeroth-order boundary-field element method (BEM): (i) wing and wake surfaces are divided into



ARTICLE IN PRESS
U. Iemma, M. Gennaretti / Journal of Fluids and Structures 21 (2005) 243–255246
M panels, SB

m, and N panels, SW

n , respectively; (ii) the field domain of interest, V, is divided into Q six face boundary

volumes, Vq; (iii) potential, j, and its derivatives are assumed to be constant over panels and volumes and equal to the

values at mid-points (centroids), ~yk. Then, Eq. (4) evaluated at the centroids of the discretized configuration yields the

following set of Nt ¼ M þ Q algebraic equations for the perturbation potential:

Hk ~jk ¼
XM
m¼1

½Bkm ~wm þ ðCkm þ sDkmÞ ~jm
 �
XM
m¼1

~Lkm � r ~jm

þ
XN

n¼1

ðFkn þ sGknÞD ~jn þ
XQ

q¼1

½sRkq ~jq þ ð ~Mkq þ s~PkqÞ � r ~jq
, ð5Þ

where jm ¼ jð~ymÞ, wm ¼ ~v
B
�~n ð~ymÞ, Djn is the potential jump across the nth wake panel, rjm ¼ rjð~ymÞ, and Hk ¼ 1=2

for ~xk 2 SB whereas Hk ¼ 1 for ~xk 2 V. The coefficients in Eq. (5) are defined as

Bkm ¼ e�s ykm

Z
SB

m

Gk dS,

Ckm ¼ e�s ykm

Z
SB

m

qGk

qn̂
dS,

Dkm ¼ e�s ykm

Z
SB

m

Gk
qŷk

qn̂
dS,

~Lkm ¼ Am
1 ~nm þ

~A
m

4 �~nm

2
~vm

0

" #
e�s ykm

Z
SB

m

Gk dS,

Rkq ¼ A
q
2 e

�s ykq

Z
Vq

Gk dV,

~Pkq ¼ ~A
q

4e
�s ykq

Z
Vq

Gk dV,

~Mkq ¼ e�s ykq ~A
q

3

Z
Vq

Gk dV� A
q
1 Iþ

1

2
~vq

0
� ~A

q

4

� 
X6
j¼1

~nj

Z
Sj

q

Gk dS

( )
,

with I denoting the unit tensor, Sj
q denoting the jth face of Vq, and ~vm

0
and ~nm denoting, respectively, the steady-state

trim flow velocity and the outward unit normal at ~ym. Moreover, Gk ¼ Gð~y; ~x ¼ ~xkÞ, ŷk ¼ ŷð~y; ~x ¼ ~xkÞ, ykm is the time

taken by a signal emitted at ~ym to reach ~xk, while Fkn and Gkn have the same expressions as Ckm and Dkm, respectively,

with the integrals evaluated over the wake panels.

A convenient matrix form of Eq. (5) is obtained by expressing the vector quantities in terms of their components in a

wing-fixed frame of reference and by recasting all contributions depending on the perturbation potential in terms of its

values at the centroids (i.e., the unknowns of the algebraic equations). For ~nj ¼ rjj and with ð~i1;~i2;~i3Þ denoting the

base vectors of the frame of reference, we introduce the ½3� M
 matrix VB with the entries given by V B

ij ¼
~ii �~nj , for

~yj 2 SB and the ½3� Q
matrix VF with the entries given by V F

ij ¼~nj �~ii, for ~yj 2 V. Then, using a finite-difference scheme

for the discretization of the gradient operator, it is possible to define a ½3� M � Nt
 gradient matrix GB

gr and a

½3� Q � Nt
 gradient matrix GF

gr such that

VB ¼ GB

gr u and VF ¼ GF

gr u,

with u denoting the Nt-element column matrix that collects the (unknown) values of potential at the body centroids (the

first M entries collected in the sub-column matrix uB ) and at the field centroids (the last Q entries collected in the sub-

column matrix uF ). In addition, it is convenient to recast the wake contribution in terms of the potential unknowns.

First, observe that [see, for instance, Morino and Iemma (1993)]

DjnðtÞ ¼ DjTE
n ðt � tnÞ,

where DjTE
n denotes the jump of potential at the wing trailing edge from which the nth wake panel was generated,

whereas tn is the time taken by the wake point to move from the trailing edge to the nth wake panel. Thus, noting that in

the frequency domain this yields

D ~jn ¼ e�s tnD ~jTE
n ,
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and introducing a matrix Snm relating trailing-edge jumps of potential with potential at body centroids, we have

D ~jn ¼
XM
m¼1

e�s tn Snm ~jm,

or, in matrix form,

D ~u ¼ SðsÞ ~uB ,

with S of dimensions ½N � M
. For recasting the problem in matrix form, also vector coefficients ~Lkm; ~Pkq and ~Mkq have

to be expressed in terms of their components in the wing frame. This is obtained by introducing the matrices L;M;P
defined as follows:

Lkmi ¼ ~Lkm �~ii ð½L
 ¼ ½Nt � M � 3
Þ,

Mkqi ¼ ~Mkq �~ii ð½M
 ¼ ½Nt � Q � 3
Þ,

Pkqi ¼ ~Pkq �~ii ð½P
 ¼ ½Nt � Q � 3
Þ.

Furthermore, coefficients Bkm;Ckm;Dkm are collected into matrices B;C;D of dimensions ½Nt � M
, coefficients

Fkn;Gkn are collected into matrices F;G of dimensions ½Nt � N
, coefficients Rkq are collected into the matrix

R of dimensions ½Nt � Q
, and matrices TB of dimensions ½M � Nt
 and TF of dimensions ½Q � Nt
 are introduced

to obtain the relationships uB ¼ TB u and uF ¼ TF u. Finally, with the square matrix T of dimensions ½Nt � Nt


defined as

T ¼

1
2
TB

TF

" #
,

and with the M-element column matrix v collecting the boundary conditions, wm, Eq. (5) may be recast in matrix form

and the linearized transonic perturbation-potential solution is given by

~u ¼ E
j
trðsÞ ~v, (6)

with the following BEM solution matrix:

E
j
trðsÞ ¼ fT� Cþ sDþ ðFþ sGÞSðsÞ½ 
TB

þ LGB

gr � sRTF � ðMþ sPÞGF

grg
�1B.

4. Transonic aeroelastic ROM

In this section, the aerodynamic matrix is described that, in a linear(ized) frequency-domain aerodynamic problem,

relates the elastic displacements to the aerodynamic forces acting on the wing. Then, an aerodynamic ROM is derived

that is extremely convenient for aeroelastic applications.

The derivation of the aerodynamic matrix has already been presented in the past for subsonic-flow analysis

(Gennaretti and Ponzi, 1999; Gennaretti et al., 2000). Here, the novelty is that the aerodynamic matrix is derived

for a transonic-flow problem and describes the forces arising from perturbations to a transonic steady-state equilibrium

condition. Note that in the transonic regime, to each steady-state condition corresponds a specific transonic

aerodynamic matrix, because of the dependence of the latter on the flight Mach number. The aerodynamic

matrix is based on the linearized BEM perturbation solution described in the previous section and on the description

of the wing elastic deformations through the following combination of Nv shape functions, ~Cn, and Lagrangean

variables, qn,

~dðx1; x2; tÞ ¼
XNv

n¼1

qnðtÞ
~Cnðx

1; x2Þ, (7)

where ðx1; x2Þ denotes a set of curvilinear coordinates defined over the surface of the wing. Indeed, following the

procedure described in the Appendices A–C, in the frequency domain it is possible to define (i) a matrix Ew relating the

Lagrangean variables, qn, with the aerodynamic boundary conditions at the wing centroids, wm, [see Appendix A,

Eq. (A.1)], (ii) a matrix Ep relating the potential values, jm, at the centroids with the perturbation pressure, p0m, [see

Appendix B, Eq. (B.1)] and (iii) a matrix Ef relating the latter with the generalized aerodynamic forces, f n [see Appendix
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C, Eq. (C.1)]. The combination of these matrices yields the following deformation/force relation:

~f ¼ EðsÞ ~q, (8)

where the aerodynamic matrix is given by

EðsÞ ¼ Ef EpðsÞE
j
trðsÞE

wðsÞ.

The aeroelastic model is obtained by coupling Eq. (8) with the wing structural model. Starting from the equations

describing the wing dynamics, the aeroelastic model is determined by the Galërkin approach based on the shape

function expansion in Eq. (7). Thus, for Ms and Ks denoting, respectively, structural mass and stiffness matrices, the

frequency-domain aeroelastic model reads

s2Ms þ Ks � EðsÞ
� �

~q ¼ 0. (9)

The time delays in disturbance propagation induced by flow compressibility and by the memory effects stored in the

convected wake vorticity [respectively, ykm and tn in Eq. (5)], cause a transcendental dependence on frequency of the

aerodynamic matrix . In turn, this implies both that the aeroelastic stability analysis cannot be performed through a

standard eigenanalysis (the associated eigenproblem has a transcendental characteristic equation with infinite roots),

and that it is not possible to formulate the problem in a time-domain state–space format, unless an infinite-dimension

state–space model is used. These difficulties are overcome by using the procedure introduced by Ghiringhelli and

Mantegazza (1993) that approximates EðsÞ through the following second-order rational expression involving a finite

number of poles

EðsÞ � s2A2 þ sA1 þ A0 þH s I� Ap

� ��1
Q, (10)

where A2;A1;A0;A;H and Q are real, fully populated matrices obtained from a least-squares approach. Applications of

this technique to the analysis of linear subsonic flows are presented in Gennaretti and Ponzi (1999) and Gennaretti et al.

(2000) for wing-tail configurations and hovering rotors, respectively. Matrices A2;A1 and A0 have dimensions

½Nv � Nv
, Ap is a ½Na � Na
 matrix containing the Na poles of the rational approximation, H is a ½Nv � Na
 matrix,

while Q has dimensions ½Na � Nv
. Note that, in the expression above, the second-order polynomial truncation is

suggested by the fact that the asymptotic behavior of transfer functions between elastic displacements and aerodynamic

forces is quadratic, as induced by the presence of the first time derivative of the velocity potential in the Bernoulli

theorem, together with the time derivative appearing in the aerodynamic boundary conditions (see matrices Ep and Ew

in Appendices A and B).

Finally, the transonic-flow aeroelastic ROM is obtained by combining Eq. (10) with Eq. (9). This yields standard

eigenproblems for flutter detection purposes whereas, in the time domain, it has the form of a state–space model that is

well suited for control and other applications (e.g., preliminary design) that need accurate predictions at low

computational costs. Specifically, in the time domain, the aeroelastic ROM is

_x ¼ Ax

with

A ¼

0 I 0

�M
�1

A0 � Ksð Þ �M
�1
A1

�M
�1
H

Q 0 Ap

2
64

3
75,

where

�M ¼ Ms � A2ð Þ

and

x ¼

q

_q

r

8><
>:

9>=
>;,

with r denoting the additional states that have been included because of the presence of the aerodynamic poles in

Eq. (10). Flutter boundaries are detected from the knowledge of the 2Nv þ Na eigenvalues of matrix A.
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5. Numerical results

The aeroelastic ROM presented above has been applied to the wing model analyzed by Guruswamy and Goorjian

(1982). The wing model is a rectangular, untwisted wing with aspect ratio 5 and a circular biconvex section with

thickness ratio 0:06. This simple model has been widely used in the past for validation of several aeroelastic transonic

formulations. The availability of the experimental data from the wind-tunnel test conducted in the NASA Langley 16-ft

transonic aeroelasticity wind tunnel and reported in Doggett et al. (1959), makes the study particularly appealing for the

validation of numerical models. Following Guruswamy and Goorjian (1982), the flutter mechanism of the wing is

described as the combination of first bending and torsion modes. These are approximated with the shape functions

suggested by Fung (1969) that, for x denoting a chordwise coordinate, y denoting a spanwise coordinate, and l denoting

the spanwise length, are given by

Cbðx; yÞ ¼
y

l

 !2
; Ctðx; yÞ ¼ x

y

l

 !
,

for bending and torsional out-of-midplane displacement, respectively.

As a first step, the influence of the flight Mach number, m
B
, on the aerodynamic transfer functions is investigated. The

results of the parametric analysis are presented in Figs. 1–4, for the real and imaginary part of entries E11 and E12 of the

aerodynamic matrix, E (in these figures, M � m
B
). The reduced frequency, k, is defined as k ¼ o c=v

B
, where c denotes

the chord length. The Mach number is gradually increased from the incompressible limit up to m
B
¼ 0:9. Fig. 5 depicts

the local Mach number distribution at the wing root section, for five different flight speeds. As it can be seen, the flow

becomes transonic about at mB ¼ 0:85, i.e., when the local flow speed reaches the speed of sound. For higher values of

mB, a shock wave is present in the flow. At mB ¼ 0:9, the maximum value of the local Mach number approaches 1.3,

thus remaining in the range of applicability of the isentropic shock model. The extent of the supersonic region at this

flight speed is shown in Fig. 6. The figure depicts the density plot of the local Mach number over the wing surface at

mB ¼ 0:9. The local iso-mach line m ¼ 1 (dotted line) shows that the flow is supersonic over a wide region of the wing

surface.

The considerable impact of flight Mach number on the aerodynamic matrix is evident for all its elements. A careful

examination of the results may give an insight into the physics of the phenomenon and on its impact on the ROM.

Specifically, it is possible to identify four different regimes:
(i)
 for m
B
p0:2 the curves are almost identical, indicating that the effects of the flow compressibility are negligible in

that range;
(ii)
 at m
B
¼ 0:4, although the overall shape of the curves resembles that observed in the previous case, it is evident that

the flow compressibility plays a significant role;
(iii)
 for 0:6pm
B
p0:8 the effects of the nonlinear terms in the reference steady-state solution (and of the corresponding

linearized contribution to the aerodynamic matrix) is important, and significantly affect the frequency dependence

of the aerodynamic transfer functions;
(iv)
 for m
B
X0:85 the steady flow is transonic (see Fig. 5), the linearized terms dominate the aerodynamic matrix, and

the frequency behavior of its entries dramatically changes.
It clearly appears that, the larger the nonlinear transonic effects, the wavier the elements of E become as a function of

the reduced frequency. As a consequence, the rational approximation of the aerodynamic matrix must include

additional poles to properly reproduce this frequency dependance.

For the present problem, 19 poles have been used in the range 0pkp1. The result of the approximation is presented

in Figs. 7 and 8 for the transfer function relating the torsion moment to the bending displacement (element E21). Figs. 7

and 8 depict the comparison between the frequency BEM solution and its rational approximation in terms of real and

imaginary parts, respectively. The agreement is excellent and the same level of accuracy is shown by all of the remaining

entries of the aerodynamic matrix.

The ROM obtained with the above approximation of E is used to predict the flutter boundaries for the test wing

examined. These results, given in terms of nondimensional speeds and reduced frequencies of flutter, are presented in

Tables 1 and 2 for the Mach numbers considered by Guruswamy and Goorjian (1982). Following Guruswamy and

Goorjian (1982), the nondimensional speed is defined as Û ¼ 2 v
B
=cot, with ot denoting wing natural frequency of

torsion.

In Tables 1 and 2 the flutter speed and the flutter frequencies are compared with the experimental and numerical

results given by Guruswamy and Goorjian (1982). For the three regimes analyzed, the agreement of the ROM

numerical results with the experimental data is remarkable, and appears to be more accurate than the numerical
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Fig. 1. Mach number influence on E11. Real part.
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Fig. 3. Mach number influence on E12. Real part.
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five different values of mB.

Fig. 6. Local Mach number distribution on the wing surface for mB ¼ 0:9. The dotted line bounds the supersonic region.
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Fig. 4. Mach number influence on E12. Imaginary part.
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calculation presented by Guruswamy and Goorjian (1982). In particular, the error on the flutter speed value predicted

by this methodology is less than 3.5% for all the regimes analyzed.

Finally, for m denoting the wing-to-air-mass density ratio (Guruswamy and Goorjian, 1982), in Fig. 9 the flutter

speed parameter v
B
=m is plotted against the Mach number, for 0:7pm

B
p0:92. Although the shock occurring in the

steady-state solution is not particularly strong because of the limited thickness of the section and the zero angle of
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Table 1

Nondimensional flutter speed versus Mach number

mB Û , experimental Û , numerical ROM

(Guruswamy and Goorjian, 1982) (Guruswamy and Goorjian, 1982) (present)

0.715 3.83 4.30 3.73

0.851 4.55 5.60 4.61

0.913 4.94 8.80 4.85
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Fig. 7. Approximation of E21. Real part.

Table 2

Reduced flutter frequency versus Mach number

mB k, experimental k, numerical ROM

(Guruswamy and Goorjian, 1982) (Guruswamy and Goorjian, 1982) (present)

0.715 0.232 0.250 0.199

0.851 0.162 0.120 0.133

0.913 0.122 0.045 0.099
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attack in the reference configuration, the well-known bucketing effect (i.e., the sudden reduction of the flutter speed in

presence of shock waves) is present for m
B
X0:9.
6. Conclusions

A methodology for the identification of an aeroelastic ROM for wings in transonic flows has been presented.

It has been obtained through the linearization of a transonic full-potential aerodynamic model, followed by

rational approximation of the corresponding aerodynamic transfer functions and coupling with the structural

dynamics operator. It has been shown that the wing transonic aeroelasticity problem can be recast in a state–space

format and that, therefore, the flutter detection can be achieved through a standard eigenvalue analysis.

Numerical results have demonstrated that the effects of flow compressibility at high Mach number have a great

influence on the aerodynamic transfer functions, and that the finite-state model used here for their approximation

gives highly accurate results. Comparisons with experimental and numerical results available in literature have

shown that the aeroelastic ROM presented here yields accurate predictions of flutter boundaries in transonic

flow regimes.
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Appendix A. Matrix Ew: deformation/potential boundary-condition relation

Let ðx1; x2Þ be a set of curvilinear coordinates defined over the wing surface. Then, in a wing-fixed space the position

of a point of the wing is described by

~yðx1; x2; tÞ ¼ ~y
0
ðx1; x2Þ þ ~dðx1; x2; tÞ,

where ~y
0
is the position in the steady-state equilibrium configuration and ~d denotes the perturbation displacement,

Eq. (7). From the equation above both the linearized distribution of perturbed outward unit normal vectors (expressed

as ~n ¼ ~n
0
þ~n0) and the velocity of the wing points (that from elastic deformation added to the translation) may be
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derived. These yield the following distribution of linearized perturbation aerodynamic boundary conditions:

wðx1; x2; tÞ ¼
XNv

n¼1

_qn
~cn �~n0

þ qn~vB
�~n0n

 !

that, transformed into frequency domain and evaluated at each centroid, gives

~v ¼ EwðsÞ ~q. (A.1)

In the equation above, v and q are column matrices collecting, respectively, boundary conditions at centroids and wing

Lagrangean variables whereas, for ~ym ¼ ~yðx1m; x
2
mÞ, the entries of the ½M � Nv
 matrix E

w are given by

Ew
mn ¼ s~cnðx

1
m; x

2
mÞ �~n0

ðx1m; x
2
mÞ þ~v

B
�~n0nðx

1
m; x

2
mÞ.

Appendix B. Matrix Ep: potential/pressure relation

Bernoulli’s theorem under small-perturbation assumption yields the potential/wing-surface pressure relationship. For

the linearized perturbation pressure, p0 ¼ p � p1, it yields (with r1 denoting undisturbed-flow density)

p0

r1
¼

v2
0

2c21
_j� 1þ

~v
B
�~v

0

c21

� �
_jþ ð~v

B
�~v

0
Þ � rj

� �
that, transformed into frequency domain, may be recast in the matrix form

~p0 ¼ EpðsÞ ~u. (B.1)

Matrix Ep, of dimensions ½M � Nt
, is expressed as

EpðsÞ ¼ sHTB þWGB

gr,

where, for dkm denoting the Kronecher delta, the ½M � M
 matrix H and the ½M � M � 3
 matrix W are, respectively,

defined as

Hkm ¼ �r1 1þ
~v

B
�~vk

0

c21
�
~vk

0
�~vk

0

2c21

 !
dkm,

W kmj ¼ r1 1þ
~v

B
�~vk

0

c21

 !
ð~v

B
�~vk

0
Þ �~ij dkm.

Appendix C. Matrix Ef : pressure/force relation

The generalized aerodynamic forces are obtained by projecting the pressure distribution onto the shape functions

describing elastic deformation. Their expression is

f n ¼ �
XM
m¼1

Z
Sm

p0~n � ~Cn dS,

or, in frequency-domain matrix form,

~f ¼ Ef ~p0, (C.1)

with the ½Nv � M
 matrix Ef defined as

Ef
nm ¼ �

Z
Sm

~n � ~Cn dS.
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